Type I error
Type I error, also known as an "error of the first kind", an α error, or a "false positive": the error of rejecting a null hypothesis when it is actually true. Plainly speaking, it occurs when we are observing a difference when in truth there is none, thus indicating a test of poor specificity. An example of this would be if a test shows that a woman is pregnant when in reality she is not. Type I error can be viewed as the error of excessive credulity.
In other words, Type I error can easily be said as "A Positive Assumption is False"
Type II error
Type II error, also known as an "error of the second kind", a β error, or a "false negative": the error of failing to reject a null hypothesis when it is in fact not true. In other words, this is the error of failing to observe a difference when in truth there is one, thus indicating a test of poor sensitivity. An example of this would be if a test shows that a woman is not pregnant, when in reality, she is. Type II error can be viewed as the error of excessive skepticism.
Statistical errors, Wikipedia
No comments:
Post a Comment